skip to main content


Search for: All records

Creators/Authors contains: "Rudnick, Daniel L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In late 2020, models predicted that a strong La Niña would take place for the first time since 2013, and we assessed whether physical and biological indicators in 2021 were similar to past La Niñas in the California Current Ecosystem (CCE). The Pacific Decadal Oscillation and Oceanic Niño Index indeed remained negative throughout 2021; the North Pacific Gyre Oscillation Index, however, remained strongly negative. The seventh largest marine heatwave on record was unexpectedly present from April to the end of 2021; however, similar to past La Niñas, this mass of warm water mostly remained seaward of the continental shelf. As expected from past La Niñas, upwelling and chlorophyll were mostly high and sea surface temperature was low throughout the CCE; however, values were close to average south of Point Conception. Similar to past La Niñas, abundances of lipid-rich, northern copepods off Oregon increased. In northern California, unlike past La Niñas, the body size of North Pacific krill (Euphausia pacifica) was close to average. Predictably, overall krill abundance was above average in far northern California but, unexpectedly, below average south of Cape Mendocino. Off Oregon, similar to past La Niñas, larval abundances of three of six coastal species rose, while five of six southern/offshore taxa decreased in 2021. Off California, as expected based on 2020, Northern Anchovy (Engraulis mordax) were very abundant, while Pacific Sardine (Sardinops sagax) were low. Similar to past La Niñas, market squid (Doryteuthis opalescens) and young of the year (YOY) Pacific Hake (Merluccius pacificus), YOY sanddabs (Citharichthysspp.), and YOY rockfishes (Sebastesspp.) increased. Southern mesopelagic (e.g., Panama lightfishVinciguerria lucetia, Mexican lampfishTriphoturus mexicanus) larvae decreased as expected but were still well above average, while northern mesopelagic (e.g., northern lampfishStenobrachius leucopsarus) larvae increased but were still below average. In line with predictions, most monitored bird species had above-average reproduction in Oregon and California. California sea lion (Zalophus californianus) pup count, growth, and weight were high given the abundant Anchovy forage. The CCE entered an enduring La Niña in 2021, and assessing the responses of various ecosystem components helped articulate aspects of the system that are well understood and those that need further study.

     
    more » « less
  2. Abstract

    The Equatorial Undercurrent (EUC) is a vital component of the coupled ocean‐atmosphere system in the tropical Pacific. The details of its termination near the Galápagos Islands in the eastern Pacific have an outsized importance to regional circulation and ecosystems. Subject to diverse physical processes, the EUC is also a rigorous benchmark for global climate models (GCMs). Simulations of the EUC in three generations of GCMs are evaluated relative to recent underwater glider observations along 93°W. Simulations of the EUC have improved, but a slow bias of ~36% remains in the eastern Pacific, along with a dependence on resolution. Additionally, the westward surface current is too slow, and stratification is too strong (weak) by ~50% above (within) the EUC. These biases have implications for mixing in the equatorial cold tongue. Downstream lies the Galápagos, now resolved to varying degrees by GCMs. Properly representing the Galápagos is necessary to avoid new biases as the EUC improves.

     
    more » « less
  3. The California Current System (CCS) has experienced large fluctuations in environmental conditions in recent years that have dramatically affected the biological community. Here we synthesize remotely sensed, hydrographic, and biological survey data from throughout the CCS in 2019–2020 to evaluate how recent changes in environmental conditions have affected community dynamics at multiple trophic levels. A marine heatwave formed in the north Pacific in 2019 and reached the second greatest area ever recorded by the end of summer 2020. However, high atmospheric pressure in early 2020 drove relatively strong Ekman-driven coastal upwelling in the northern portion of the CCS and warm temperature anomalies remained far offshore. Upwelling and cooler temperatures in the northern CCS created relatively productive conditions in which the biomass of lipid-rich copepod species increased, adult krill size increased, and several seabird species experienced positive reproductive success. Despite these conditions, the composition of the fish community in the northern CCS remained a mixture of both warm- and cool-water-associated species. In the southern CCS, ocean temperatures remained above average for the seventh consecutive year. Abundances of juvenile fish species associated with productive conditions were relatively low, and the ichthyoplankton community was dominated by a mixture of oceanic warm-water and cosmopolitan species. Seabird species associated with warm water also occurred at greater densities than cool-water species in the southern CCS. The population of northern anchovy, which has been resurgent since 2017, continued to provide an important forage base for piscivorous fishes, offshore colonies of seabirds, and marine mammals throughout the CCS. Coastal upwelling in the north, and a longer-term trend in warming in the south, appeared to be controlling the community to a much greater extent than the marine heatwave itself. 
    more » « less
  4. A data-constrained state estimate of the southern California Current System (CCS) is presented and compared with withheld California Cooperative Oceanic Fisheries Investigations (CalCOFI) data and assimilated glider data over 2007–17. The objective of this comparison is to assess the ability of the California State Estimate (CASE) to reproduce the key physical features of the CCS mean state, annual cycles, and interannual variability along the three sections of the California Underwater Glider Network (CUGN). The assessment focuses on several oceanic metrics deemed most important for characterizing physical variability in the CCS: 50-m potential temperature, 80-m salinity, and 26 kg m−3isopycnal depth and salinity. In the time mean, the CASE reproduces large-scale thermohaline and circulation structures, including observed temperature gradients, shoaling isopycnals, and the locations and magnitudes of the equatorward California Current and poleward California Undercurrent. With respect to the annual cycle, the CASE captures the phase and, to a lesser extent, the magnitude of upper-ocean warming and stratification from late summer to early fall and of isopycnal heave during springtime upwelling. The CASE also realistically captures near-surface diapycnal mixing during upwelling season and the semiannual cycle of the California Undercurrent. In terms of interannual variability, the most pronounced signals are the persistent warming and downwelling anomalies of 2014–16 and a positive isopycnal salinity anomaly that peaked with the 2015–16 El Niño.

     
    more » « less
  5. Abstract

    The history of over 100 years of observing the ocean is reviewed. The evolution of particular classes of ocean measurements (e.g., shipboard hydrography, moorings, and drifting floats) are summarized along with some of the discoveries and dynamical understanding they made possible. By the 1970s, isolated and “expedition” observational approaches were evolving into experimental campaigns that covered large ocean areas and addressed multiscale phenomena using diverse instrumental suites and associated modeling and analysis teams. The Mid-Ocean Dynamics Experiment (MODE) addressed mesoscale “eddies” and their interaction with larger-scale currents using new ocean modeling and experiment design techniques and a suite of developing observational methods. Following MODE, new instrument networks were established to study processes that dominated ocean behavior in different regions. The Tropical Ocean Global Atmosphere program gathered multiyear time series in the tropical Pacific to understand, and eventually predict, evolution of coupled ocean–atmosphere phenomena like El Niño–Southern Oscillation (ENSO). The World Ocean Circulation Experiment (WOCE) sought to quantify ocean transport throughout the global ocean using temperature, salinity, and other tracer measurements along with fewer direct velocity measurements with floats and moorings. Western and eastern boundary currents attracted comprehensive measurements, and various coastal regions, each with its unique scientific and societally important phenomena, became home to regional observing systems. Today, the trend toward networked observing arrays of many instrument types continues to be a productive way to understand and predict large-scale ocean phenomena.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)